

Sea-Level Impacts of Climate Change

Prof. Robert J. Nicholls

School of Civil Engineering and the Environment and the Tyndall Centre for Climate Change Research
University of Southampton
Southampton SO17 1BJ
United Kingdom

r.j.nicholls@soton.ac.uk

Plan

- Introduction
- What is sea-level rise?
- Impacts of sea-level rise
- Responses to sea-level rise
- Concluding thoughts

Coasts and People

Population and economic density in the coastal zone is greater than other areas of the earth's surface.

Source: Nicholls and Small, 1993, Journal of Coastal Research

Current Exposure by Elevation

based on today's conditions in 84 developing countries

Source: Dagsputa et al (2007) World Bank Report (2009) Climatic Change

What is Sea-Level Rise?

Climate-induced Sea-Level Rise

Rising temperatures lead to:

- Thermal expansion of seawater;
- Melting of land-based ice
 - Small glaciers (e.g., Rockies, Alaska)
 - Greenland ice sheet
 - West Antarctic ice sheet

Global Sea-Level Rise

(Source: IPCC, 2007, AR4 WG1) ? /

Subsiding Coastal Megacities

(maximum subsidence during the 20th Century)

Source: Nicholls (1995) GeoJournal

What Are The Impacts of Sea-Level Rise?

Physical Impacts of Sea-Level Rise

NATURAL SYSTEM EFFECT		INTERACTING FACTORS		
		CLIMATE	NON-CLIMATE	
1. Inundation, flood and storm damage	a. Surge (flooding from the sea)	Wave/storm climate, Erosion, Sediment supply.	Sediment supply, Flood management, Erosion, Land reclamation	
	b. Backwatereffect (floodingfrom rivers)	Run-off.	Catchment management and land use.	
2. Wetland loss (and change)		CO ₂ fertilisation of biomass production, Sediment supply, Migration space	Sediment supply, Migration space, Land reclamation (i.e., direct destruction).	
3. Erosion (of 'soft' morphology)		Sediment supply, Wave/storm climate.	Sediment supply.	
4. Saltwater Intrusion	a. Surface Waters	Run-off.	Catchment management (over- extraction), Land use.	
	b. Ground-water	Rainfall.	Land use, Aquifer use (over-pumping).	
5. Higher water tables/ impeded drainage		Rainfall, Run-off.	Land use, Aquifer use, Catchment management.	

Socio-Economic Impacts of SLR

Coastal Socio-	Sea-level rise physical impact					
economic Sector	Inundation, etc.	Wetland loss	Erosion	Saltwater intrusion	Higher water tables/ etc.	
Freshwater Resources	X	Х	-	X	X	
Agriculture and forestry	X	X	-	X	X	
Fisheries and Aquaculture	X	X	Х	X	-	
Health	X	X	-	X	X	
Recreation and tourism	X	X	Х	-	-	
Biodiversity	Χ	X	X	X	X	
Settlements/ infrastructure	X	-	Х	X	X	

X = strong; x = weak; - = negligible or not established.

Floods: December Northeaster 1992

New York City – FDR Drive

Submergence Due to Subsidence

Bangkok Area

Threatened Coastal Areas

to 40-cm of SLR by the 2080s

Exposed Population 2005 Top 20 Cities – based on 100 year flood plain

Source: Nicholls et al., 2008, OECD Report

Exposed Assets 2005 Top 20 Cities – based on 100 year flood plain

Source: Nicholls et al., 2008, OECD Report

What Can We Do About Sea-Level Rise?

Mitigation – source control Adaptation – change behaviour

Mitigation Scenarios

Hadley Coupled Ocean-Atmosphere Model 2

Planned Adaptation to SLR

Many Adaptation Options are Available

P – Protection; A – Accommodation; R – Retreat.

NATURAL SYSTEM EFFECT		POSSIBLE ADAPTATION RESPONSES	
1. Inundation,	a. Surge	Dikes/surge barriers [P],	
flood and storm damage	b. Backwater effect	Building codes/floodwise buildings [A], Land use planning/hazard delineation [A/R].	
2. Wetland loss (and change)		Land use planning [A/R],	
		Managed realignment/ forbid hard defences [R], Nourishment/sediment management [P].	
3. Erosion (of 'soft' morphology)		Coast defences [P],	
		Nourishment [P],	
		Building setbacks [R].	
4. Saltwater	a. Surface Waters	Saltwater intrusion barriers [P],	
Intrusion		Change water abstraction [A/R].	
	b. Ground-water	Freshwater injection [P],	
		Change water abstraction [A/R].	
5. Rising water tables/ impeded		Upgrade drainage systems [P],	
drainage		Polders [P],	
		Change land use [A],	
		Land use planning/hazard delineation [A/R].	

Fraction of Coast Protected Sensitivity Analysis on Protection Costs

FUND analysis (for the ATLANTIS Project)

Optimists vs. Pessimists

Optimists	Pessimists	
Possible small rise in sea level (< 0.5 m by	Possible large rise in sea level (> 1 m by	
2100)	2100)	
High benefit-cost ratios	Extreme events and disasters	
Adaptation will work	Adaptation will fail or is unaffordable	
Thriving subsiding megacities	Optimistic socio-economic scenarios	
	Observed protection tends to be reactive	
	rather than proactive – the adaptation	
	deficit	
	Disasters could trigger coastal	
	abandonment, undermining the case for	
	protection	
	Retreat and accommodation have long lead	
	times and need to start now	

Concluding Remarks (1)

- Climate-induced sea-level rise is inevitable the uncertainty is its magnitude.
- This will be compounded by subsidence in many densely-populated coastal areas.
- Risks are already rising, and this will continue.
- The worst-case (do nothing) impacts are dramatic.
- There are widely differing views concerning the success or failure of adaptation.

Concluding Remarks (2)

- Mitigation of climate and subsidence is needed to make the problem more manageable.
- To adapt to dynamic coastal risks, proactive assessment is required including:
 - defining the relevant drivers,
 - the potential impacts,
 - the potential adaptation responses,
 - selection of sustainable adaptation pathways.

Sea-Level Impacts of Climate Change

Prof. Robert J. Nicholls

School of Civil Engineering and the Environment and the Tyndall Centre for Climate Change Research
University of Southampton
Southampton SO17 1BJ
United Kingdom

r.j.nicholls@soton.ac.uk